Formation of highly reactive gamma-ketoaldehydes (neuroketals) as products of the neuroprostane pathway.

نویسندگان

  • N Bernoud-Hubac
  • S S Davies
  • O Boutaud
  • T J Montine
  • L J Roberts
چکیده

Neuroprostanes are prostaglandin-like compounds produced by free radical-induced peroxidation of docosahexaenoic acid, which is highly enriched in the brain. We previously described the formation of highly reactive gamma-ketoaldehydes (isoketals) as products of the isoprostane pathway of free radical-induced peroxidation of arachidonic acid. We therefore explored whether isoketal-like compounds (neuroketals) are also formed via the neuroprostane pathway. Utilizing mass spectrometric analyses, neuroketals were found to be formed in abundance in vitro during oxidation of docosahexaenoic acid and were formed in greater abundance than isoketals during co-oxidation of docosahexaenoic and arachidonic acid. Neuroketals were shown to rapidly adduct to lysine, forming lactam and Schiff base adducts. Neuroketal lysyl-lactam protein adducts were detected in nonoxidized rat brain synaptosomes at a level of 0.09 ng/mg of protein, which increased 19-fold following oxidation in vitro. Neuroketal lysyl-lactam protein adducts were also detected in vivo in normal human brain at a level of 9.9 +/- 3.7 ng/g of brain tissue. These studies identify a new class of highly reactive molecules that may participate in the formation of protein adducts and protein-protein cross-links in neurodegenerative diseases and contribute to the injurious effects of other oxidative pathologies in the brain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermodynamic investigation of the interaction between Mono-s-chloroTriazinyl MCT Reactive Dyes and cetylpyridinium chloride inaqueous solution

The interactions two synthetic triazinyl reactive dyes Mono-s-chloro Triazinyl reactive dyes DI and DII with the cationic surfactant N-hexadecyl pyridinium chloride CPC were studied using a conductometric method in 25, 30, 35, 40 and 45ºC. The equilibrium constants and other thermodynamic parameters for the ion pair formation were calculated on the basis of a theoretical model using the data ob...

متن کامل

Advanced Glycation End-Products and Their Receptor-Mediated Roles: Inflammation and Oxidative Stress

Glycation is a protein modification, which results in a change in a protein structure. Glycation is believed to be the etiology of various age-related diseases such as diabetes mellitus and Alz-heimer’s disease (AD). Activation of microglia and resident macrophages in the brain by glycated proteins with subsequent oxidative stress and cytokine release may be an important factor in the progressi...

متن کامل

Redox-Annulation of Cyclic Amines and β-Ketoaldehydes

Benzo[a]quinolizine-2-one derivatives are readily assembled from 1,2,3,4-tetrahydroisoquinoline and β-ketoaldehydes by means of a new intramolecular redox-Mannich process. These reactions are promoted by simple acetic acid and are thought to involve azomethine ylides as reactive intermediates.

متن کامل

Interferon- Gamma- Inducible Guanosine Triphosphate Cyclohydrolase 1 (GTP-CH1) Pathway Is Associated with Frailty in Egyptian Elderly

Background: Chronic low-grade inflammation may be a cardinal pathophysiologic feature in the pathogenesis of frailty. Interferon-gamma (INF-γ) is an understudied proinflammatory cytokine in frailty that induces many inflammatory pathways including the guanosine triphosphate cyclohydrolase 1 (GTP-CH1) pathway. Our aim was to evaluate the GTP-CH1 pathway in Egyptian frail elderly subjects. ...

متن کامل

مروری بر کنترل اتوفاژی به وسیله ROS (گونه های فعال اکسیژن )

    ROS (Reactive Oxygen Species) are small, short-lived and highly reactive molecules that can oxidize proteins, lipids and DNA. ROS are formed by incomplete one-electron reduction of oxygen. ROS include oxygen anions, free radicals, including superoxide and hydroxyl radicals, and peroxides such as hydrogen peroxide (H2O2).  Autophagy is a catabolic pathway for degradation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 276 33  شماره 

صفحات  -

تاریخ انتشار 2001